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Abstract—Many photon-counting photo-detectors have the
property that they become inoperative for some time after
detection event. We say the detector is blocked during this time.
Blocking produces losses when using the detector as a photon-
counter to detect a communications signal. In this paper, we
characterize blocking losses for single detectors and for arrays
of detectors. For arrays, we discuss conditions under which the
output may be approximated as a Poisson point process, and
provide a simple approximation to the blocking loss. We show
how to extend the analysis to arrays of non-uniformly illuminated
arrays.

I. INTRODUCTION

Many photon-counting photo-detectors have the property

that they become inoperative for some time after detection

event. We say the detector is blocked during this time. When

used to detect a communications signal, blocking leads to

losses relative to an ideal detector, which may be measured as

a reduction in the communications rate for a given received

signal power, or a required increase in the signal power

required to effect the same communications rate In this paper,

we characterize blocking losses for single detectors and for

arrays of detectors.

Throughout we assume the communications signal is inten-

sity modulated, and received by an array of photon-counting

photo-detectors. For the purpose of this analysis, we assume

the detectors are ideal, in that they produce a signal that allows

one to reproduce the arrival times of electrons, produced either

as photo-electrons or from dark noise, exactly. For single

detectors, we illustrate the performance of the maximum-

likelihood(ML) receiver in blocking, as well as a maximum-
count(MC) receiver, that, when receiving a pulse-position-

modulated(PPM) signal, selects the symbol corresponding to

the slot with the largest electron count. We show that whereas

the MC receiver saturates at high count rates, the ML receiver

may not. We numerically compute the loss in capacity, symbol-

error-rate, and count-rate. We show that the capacity and

symbol-error-rate losses track, whereas the count-rate loss

does not, generally, reflect the SER or capacity loss, as the

slot-statistics at the detector output are no longer Poisson. We

show that the MC receiver loss may be accurately predicted for

dead-times on the order of a slot, by using the exact statistics

provided in [1].
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Blocking may be mitigated by spreading the signal intensity

over an array of detectors, reducing the count rate on any one

detector. We discuss conditions under which the sum of the

arrayed detectors may be approximated as a Poisson point

process, and provide a simple approximation to the blocking

loss as a function of the probability that a detector is unblocked

at a given time, essentially treating the blocking probability as

a scaling of the detection efficiency. We show how to extend

the analysis to arrays of non-uniformly illuminated arrays.

We also discuss incorporating a more accurate model of

the blocking phenomenon, wherein the detector is blocked

for some time, then has a recovery of its detection efficiency

to the steady-state value. We illustrate in the Appendix how

to accurately model the reduction in count rate for such a

detector, and show that the additional loss due to the recovery

may be modeled by extending the blocking duration.

II. CHANNEL MODEL

Suppose we are transmitting data over an optical link via

intensity modulation with pulse-position-modulation (PPM) of

order M and slot width Ts. The signal, received on an array

of K detectors, is modeled as a Poisson point process. The

incident photon flux on the jth detector is

lj(t) = lb/K + lsqjM
∑

i

u(t − Ts(xi + iM))

where lb and ls are the cumulative background and signal rates

over the entire array, qj is fraction of the signal incident on the

jth detector (qj ∈ [0, 1] ,
∑

j qj = 1), u(t) is a unit pulse on

[0, Ts) (u(t) = 1/Ts on [0, Ts], and u(t) = 0 elsewhere), and

xi ∈ {0, 1, . . . , M−1} is the pulse position of the ith symbol.

We assume the distribution q = (q1, . . . , qK) is constant. In

general, the signal intensity pattern would be time-varying due

to random changes in the optical phase front. However, in our

cases of interest the coherence time of these variations is much

longer than the symbol durations.

Let η be the detection efficiency, and ld the detector dark

rate. We assume a perfect detector/receiver, that reproduces

the arrival time of each detected photo-electron or dark-current

electron. In the remainder, we refer to all events at the output

of the detector as electrons. Each detector is paralyzed, or

blocked, following the detection of an electron for a duration

τ seconds1 during which no electrons are produced. Due to

1A more accurate model for some detectors is that the detection efficiency
recovers exponentially. This will be treated in Section V-B1 and Appendix A.



the blocking, the output process is a self-excited point process.

Let Nj(t) denote the number of electrons produced by the jth

detector on [0, t), {w1, w2, . . . , wNj(T )} their ordered arrival

times (wi < wi+1), and

νj(t) = ηlj(t) + ld

the intensity function of the unblocked electron process (the

intensity of electrons in the absence of blocking). Suppose we

observe arrivals over an interval [0, T ]. The detector output

sample function density, conditioned on lj is [2]

p({Nj(t), 0 ≤ t ≤ T}|lj) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
(
− ∫ T

0
νj(t)dt

)
, Nj(T ) = 0

Nj(T )∏
i=1

νj(wi) exp

⎛
⎝−

Nj(T )+1∑
i=1

∫ wi

wi−1+τ

νj(t)dt

⎞
⎠ , otherwise

where, for notational convenience, we define w0
def= − τ and

wn+1
def=T .

The point processes produced by each detector are condi-

tionally independent. Letting N(t) = (N1(t), . . . , NK(t)) and

l = (l1, . . . , lK), the joint statistics of the detected process are

P ({N(t), 0 ≤ t ≤ T}|l) =
K∏

j=1

p({Nj(t), 0 ≤ t ≤ T}|lj)

III. SINGLE DETECTOR

We first consider reception of the signal with a single

detector (K = 1, q1 = 1.0). In the single detector case,

we make the simplifying assumption in analysis that the

detector is unblocked at the beginning of each PPM symbol.

This effectively removes inter-symbol-interference (ISI), and

restricts applicability to cases where the blocking duration is

less than a channel symbol. It will allow us to find simple

expressions for the maximum-likelihood(ML) symbol-error-

rate (SER) and the channel capacity, which would otherwise

be complicated by the presence of ISI. We also set ld = 0.

A. Symbol Error Rates

The ML symbol decision is given by

x̂ML = arg max
x∈{0,1,...,M−1}

p(N(t)|x)

where, to emphasize the symbol decision, we condition on

the symbol position x, which completely specifies l(t). Let

nj denote the number of counts in the jth slot (the interval

[(j−1)Ts, jTs)). In the absence of blocking, the collection of

slot counts are a sufficient statistic for ML detection, and the

ML decision reduces to selecting the slot with the maximum

count. It’s instructive to observe the behavior of this max-

count(MC) receiver in the presence of blocking. Let

x̂MC = arg max
x∈{0,1,...,M−1}

nx

Figure 1 illustrates the symbol error rate, Ps = P [x̂ �= x], of

the ML receiver, the MC receiver, and an unblocked receiver

(τ = 0), for the case M = 16, τ = 1.0 ns, lb = 1.0e8
photons/sec, ld = 0, and Ts = 2 ns.

We also plot two analytic approximations to the MC re-

ceiver. The first approximation uses the true probability mass

functions of noise and signal slots provided in [1]. However, it

assumes the slot counts are independent. For τ small relative

to MTs, the independence assumption is reasonable, and the

approximation is accurate. The second approximation assumes

the slot counts are Poisson distributed, using the measured

signal and noise slot mean count rates. We see that the Poisson

assumption is inaccurate.

B. Capacity

The capacity of the channel (assuming the receiver has ac-

cess to all detection event times) with a input drawn uniformly

on {1, . . . , M} is given by [3]

CPPM =
1

MTs
EX,Nt

[
log2

exp(L(N(t)|X))
1
M

∑
j exp(L(N(t)|x = j))

]
bits/s

where EX,N(t) is an expectation over X and N(t), and

L(N(t)|x) = log p(N(t)|x). Figure 2 illustrates the capacity,

evaluated numerically, as a function of ls for M = 16, τ = 1.0
ns, lb = 108 photons/sec, ld = 0, and Ts ∈ {0.5, 1.0, 2.0, 4.0}
ns. At large signal power, the capacity approaches the same

limit as for the unblocked case, log2(M)/(MTs). We can see

this intuitively, since there is information conveyed in the inter-

arrival-times, not only the slot counts, and the inter-arrival-

times in a signal slot can be reduced by increasing the signal

power.
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Fig. 1. Symbol Error Rates for a single blocked detector, with ML
(unblocked and blocked) and MC symbol decisions. Also illustrated are two
approximations to the MC error rate. M = 16, Ts = 2.0 ns, τ = 1.0 ns,
λb = 108 photons/s

C. Assessing Losses

Figure 3 illustrates several measures of the blocking loss for

the case Ts = 2 ns, τ = 1 ns, ld = 0 and lb = 108 photons/s.
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Fig. 2. Capacity, solid lines are blocked capacities, dashed unblocked.
Varying Ts with M = 16, τ = 1.0 ns, λb = 108 photons/s for all.

The loss in SER and capacity are the dB increase in ls required

to affect the same SER or capacity as an unblocked detector.

The loss in count rate is the difference between the incident

signal rate, ls, and the signal count rate at the detector output.

We see that the ML SER loss tracks well with the capacity

loss. We expect that the capacity of the MC receiver would

also track with the MC SER loss. The plots show that the ML

receiver achieves a gain over the MC receiver (a lower signal

power to achieve the same SER), although the gains diminish

at low SER. The SER and count-rate losses grow unbounded

at high signal power, whereas, as noted earlier, the capacity

loss goes to zero at high power (a discontinuity in the limit).

How should the loss be assessed? The relevant loss is the

increase in signal power required to transmit data at a specified

error rate. We assume the information bits are encoded with

a power efficient error-correction-code prior to being mapped

to PPM symbols. Suppose the systems use codes of rate 1/2.

The relevant operating point then corresponds to a capacity

log2(M)/(2MTs). Modern ECCs can achieve acceptably low

error rates at signal powers ≈ 2 dB in excess of capacity

(accounting for implementation losses). In cases where the ca-

pacity is difficult to measure, we take the loss corresponding to

a target uncoded SER of 0.2(M−1)/(M/2), corresponding to

information bit-error-rate (post-decoding) of ≈ 10−6. Utilizing

the SER as a measure has the advantage that the SER may be

estimated directly via simulation when analytical expressions

are intractable.

For example, in Figure 3, the relevant range of λs, from

Figure 2, would be ≈ 78 dB. Here the error in using an MC

receiver, for example, is less pronounced.

IV. MULTIPLE DETECTORS

In most practical cases, the signal will be focused on

an array of detectors. This enables pointing and tracking
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Fig. 3. Blocking Losses measured in terms of count rate, MC SER, ML SER
and Capacity (ML). M = 16, Ts = 2.0 ns, ld = 0, lb = 108 photons/s,
τ = 1.0 ns

algorithms and spatial filtering. For detectors with blocking,

spreading the signal over many detectors lowers the signal

intensity per detector, mitigating blocking (presuming blocking

is dominated by the signal). In this section we extend the single

detector analysis to multiple detectors.

Although the ML receiver is of theoretical interest, in

practice it may be prohibitively complex to implement. Figures

4 and 5 illustrate the MC SER relative to the unblocked SER.

In these simulations, we no longer assume the detector is

initially unblocked. Also illustrated are several approximations

to the SER. These are described in the following section.
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Fig. 4. Blocking Losses M = 8, Ts = 1.0 ns, lb = 107 p/s, ld = 103

pe/s, η = 0.3, K = 16, τ = 48.0 ns
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Fig. 5. Blocking Losses M = 8, Ts = 1.0 ns, lb = 109 p/s, ld = 103

pe/s, K = 4, τ = 1.0 ns

V. PREDICTING BLOCKING LOSS

In this section we derive some methods to predict the

blocking loss.

A. Non-Poisson Statistics

Slot statistics in the presence of blocking are derived in

[1]. This analysis may be extended to arrays of detectors

as follows. Let N
(i)
j be the number of counts in the ith

slot of the jth detector, p0,j(k) = P (N (i)
j |x �= i) and

p1,j(k) = P (N (i)
j |x = i) the probability mass functions of

a noise and signal slot, respectively, where x is the pulse

position. These mass functions, under the approximation that

every slot is preceded by an un-pulsed slot, were derived in

[1]. Let Ni =
∑K

j=1 N
(i)
j , the summed count. Since the arrival

processes are independent, we have

p0(k) := P (Ni = k|x �= i) =
K∗

j=1
p0,j(k) (1)

p1(k) := P (Ni = k|x = i) =
K∗

j=1
p1,j(k) (2)

where ∗ denotes convolution.

Using the exact slot statistics, and assuming independent

slot counts, provides accurate estimates of the MC receiver

performance when the blocking duration is on the order of the

slot duration, as illustrated in Figure 1 for a single detector, and

Figure 5. However, the mass functions in [1] do not account for

inter-symbol-interference, and the independence assumption

breaks down for long durations. In the following sections,

we develop a Poisson approximation, which will prove to be

accurate in many cases of interest.

B. Blocking Probability

Suppose the unblocked electron rate of the detector is a

constant l, and divide time into intervals of δ seconds. We

may approximate the evolution of the detector state with an

L = τ/δ state Markov chain, illustrated in Figure 6. State 0
is the unblocked state. With probability q0 = exp(−δl), no

photons are detected and the detector remains unblocked. If

photons are detected, the detector remains blocked for Lδ = τ
seconds. Let μ0 denote the probability the detector is in the

unblocked state. We have

μ0 =
1

1 + Lq1

=
1

1 + τ
δ (1 − e−δl)

and, in the limit of small δ,

μ0 =
1

1 + τ l
(3)

Adding memory to the modulation, via PPM, will increase

the blocking probability [4]. Nonetheless, we may model the

probability that the detector is blocked at some time t as a

stationary μ0.

0 1 L2

Fig. 6. Markov model of detector state

1) Adjustment for Exponential Recovery: A more accurate

model of blocking for certain detectors is as a time-varying

detection efficiency that goes to zero for a period of τ
seconds after the production of a photo-electron, and then rises

exponentially, with time constant τb, back to its maximum

value of η0. That is, if the last detected event was at time s,

the detection efficiency at time t is

η(t) = η0 (1 − exp(−max(0, t − s − τ)/τb)) (4)

An example with η0 = 0.5, τb = 0.5Ts and τ = 0.2Ts is

illustrated in Figure 7

We may model the exponential recovery by extending the

blocking duration such that the mean detected photo-electrons

over the duration of the recovery is preserved. That is, we take

the blocking duration to be τ ′ = τ + τb, so that, with s = 0,

lim
T→∞

(
η0(T − τ ′) −

∫ T

0

η(t)dt

)
= 0

C. Poisson Approximation: Sums of Point Processes

The sum of a collection of independent, uniformly sparse

point processes converges in distribution to a Poisson point

process [2, Theorem 5.2.3]. This suggests approximating the

summed process as Poisson. But how quickly does this con-

verge, and how does it converge if the component processes

are not sparse?

We consider the accuracy of the Poisson approximation by

examining the statistics of a count over a finite interval. Let
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Fig. 7. Detection Efficiency–Recovery from a Detection Event at s = 0

Yi be the count over an interval ε ≤ τ from detector i, and let

SK =
∑K

i=1 Yi be the sum of the counts over the interval. The

sum SK converges in distribution to a Poisson random variable

with mean
∑K

i=1 pi where pi = P [Yi = 1] [5]. Suppose the

unblocked electron process on the ith detector has a constant

intensity li. One can show that

pi =
δli

1 + τ li

The divergence between the distribution of SK , PSK , and a

Poisson random variable with mean λ, Po(λ), may be bounded

as [5]

D(PSK ||Po(λ)) ≤ 1∑K
i=1 pi

K∑
i=1

p3
i

1 − pi

Suppose l1 = l2 = · · · = lK . Put δ = τ , the maximum

duration over which the Yi are binary. Then we have

D(PSK ||Po(λ)) ≤ (τ l1)2

(1 + τ l1)

As we would expect, the Poisson approximation becomes more

accurate with decreasing mean counts per detector per dead-

time (quadratically in τ l1 for small τ l1) and less accurate with

increasing τ l1 (linear in τ l1 for large τ l1). In particular, we

are interested in how well a slot count is approximated as

Poisson-distributed. Suppose Ts � τ , put δ = Ts, and use the

approximation (1 + l1(τ − Ts)) ≈ (1 + l1τ). Then

D(PSK
||Po(λ)) ≤

(
Tsl1

1 + τ l1

)2

Hence we may expect the Poisson approximation over a slot

to be accurate even for large τ l1, so long as the mean counts

per detector per slot time is small.

D. Poisson Approximation: Channel Capacity

In this section, following the treatment in [6], we derive an

approximate loss given the Poisson approximation in Section

V-C holds. Consider the channel in the absence of blocking,

with mean signal photo-electron rate ηls and mean noise

rate ηlb + Kld. One may bound the PPM capacity by the

capacity of an intensity modulated channel with the same

duty cycle, 1/M , and infinite bandwidth. This bound is a

good approximation to the PPM capacity, and losses computed

based on it will prove to accurately reflect PPM losses. The

capacity of the unblocked intensity modulated Poisson channel

with duty cycle 1/M is given by [7]

Cu = ηlsf(ρ) bits/s

where

f(ρ) =
(

1 +
1

Mρ

)
log2(1 + Mρ) −

(
1 +

1
ρ

)
log2(1 + ρ)

ρ =
ηls

ηlb + Kld

We will find it useful to use the approximation [8]

Cu ≈ ηlsg(ρ)

where

g(ρ)def=
log2 M

1 + 1
ρ

2 log M
M−1

In the presence of blocking, we may treat the probability

that the detector is unblocked as a scaling of the detection

efficiency, and approximate the signal and noise rates as

l′s = ηls

K∑
i=1

qi

1 + τ li
(5)

l′b = (ηlb/K + ld)
K∑

i=1

1
1 + τ li

(6)

and approximate the capacity as

Cb ≈ l′sg(ρ′)

where

ρ′ = ρ

∑K
i=1

qi

1+τli∑K
i=1

1
K

1
1+τli

Suppose the illumination is uniform: q1 = q2 = · · · = qK ,

and, subsequently, l1 = l2 = · · · lK . Then ρ′ = ρ and the

capacity loss is
Cb

Cu
≈ 1

1 + τ l1

So we lose, due to blocking, approximately μ0 bits/s, the

fraction of time a detector is unblocked. We may also state

the loss in terms of the increase in signal power required to

achieve the same capacity. Putting

Cu ≈ ηlsg(ρ) = ηl′sμ0g(ρ) ≈ Cb



and solving for ls in terms of l′s yields

ls =
μ0l

′
s +

√
(μ0l′s)2 + 4μ0ψ(l′s + ψ)
2(1 + ψ/l′s)

where

ψ =
2 log M(ηlb + Kld)

η(M − 1)

Hence the loss is

loss
def=

l′s
ls

=
2(ψ + l′s)

μ0l′s +
√

(μ0l′s)2 + 4μ0ψ(l′s + ψ)
(7)

We may simplify the loss in the region where either the

signal is dominant (high ’SNR’) or the noise is dominant (low

’SNR’). Suppose ψ � l′s (low SNR), then we have

loss ≈ 1√
μ0

Alternately, if ψ � l′s (high SNR), we have

loss ≈ 1
μ0

We can also see this by noting that the capacity goes as

(l′s)
2/(l′s + l′b). To the extent that blocking is well modeled

as a scaling of the detection efficiency by μ0, at high SNR

this yields a loss of μ0, and at low SNR a loss of
√

μ0.

E. Poisson Approximation: Accuracy

Returning to the more general model in Section V-B1,

Figure 8 illustrates an example with K = 16, lb = 1.6 × 109

p/s, ld = 103 e/s, Ts = 1 ns, M = 8, τ = 8Ts,

τb = 16Ts, and η = 0.3. Two estimates are illustrated,

one using μ0 = 1/(1 + τ l) and one with the correction

μ0 = 1/(1+(τ +τb)l). We see that the Poisson approximation

with the correction term accurately predicts the loss due to

blocking with exponential recovery.
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VI. NON-UNIFORM INTENSITY PATTERNS

In the general case, the signal intensity on each detector will

be non-uniform. In this section, we consider two non-uniform

patterns: a diffraction-limited pattern, and a speckle pattern

caused by atmospheric distortion of the signal.

With a non-uniform pattern, one can improve the perfor-

mance by summing a subset of the detector outputs [9]. In

fact, a weighted sum, in the absence of blocking, is a sufficient

statistic for the ML receiver. We do not select a subset of

the elements here, although the analysis could be extended to

include that case. We assume the entire collection of detector

outputs are summed, without weighting.

A. Diffraction-limited Intensity Pattern

Let I(ρ) be the normalized signal field intensity in the focal

plane at radial distance ρ. Assume the incident signal is a plane

wave. Then the intensity pattern is given by an Airy function

I(r) =

(
2J1

(
πDr
λF

)
πDr
λF

)2

which we will approximate as Gaussian

I(x, y) ≈ 1
2πσ2

g

exp
(−(x2 + y2)

2σ2
g

)

where σg = 1.35λF/(πD), and r =
√

x2 + y2. Let the focal

plane be divided into an array of K square pixels, where each

pixel has width 2d, and the jth pixel center is at (ρj,1, ρj,2).
Let the center of the intensity pattern be offset by a radial

distance r′ = (r1, r2). The fraction of signal power integrated

by the jth pixel is

qj =
∫ ρj,1−r1+d

ρj,1−r1−d

∫ ρj,2−r2+d

ρj,2−r2−d

I(x, y)dxdy

Figure 9 illustrates an example with D = 20 cm, F = 1 m,

K = 25, lb = 6.25 × 107 p/s, ld = 103 e/s, Ts = 128 ns,

τ = 2Ts, M = 16, d = 5 × 106, and η = 0.5. Illustrated

are the SER for the unblocked case, the blocked simulation,

and three estimates of the blocked performance: one using

the Poisson approximation with rates given by (5) (6), one

using (1)(2) for the slot statistics, and one using (7), with μ0

set by the detector with the maximum qj . Since the blocking

duration is moderate, the estimate from (1)(2) is accurate. The

Poisson approximation is less accurate, since, although K is

large, the number of detectors with significant illumination by

the signal is small. Finally, (7) accurately tracks the Poisson

estimate, simply by choosing the detector with the maximum

blockage.

B. Focal Plane Signal Distribution in the Presence of Clear
Air Turbulence (Speckled Intensity Patterns)

As a wave propagates through turbulent atmosphere, its

phase is distorted. This phase distortion manifests itself at the

focal plane of an imaging systems with a point spread function

much larger of the of diffraction limit. If the integration time

of a pixellated detector or a CCD device at the focal plane is
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Fig. 9. Symbol Error Rates in Blocking with Airy-pattern Illumination

much less than the atmosphere coherence time, the distribution

of light at the focal plane will be essentially speckled. In

other terms, the energy content of a downlink signal beam

integrated over a slot time will be distributed at the focal plane

in a number of speckles, each one of angular extension of a

diffraction limited spot [10].
Accurate simulation of the speckled distribution of the

signal at the receiver is a problem not easy to describe exactly.

One approach is to use Wave-Optics simulation, that simulates

the propagation of the signal in a number phase screens, and

then image the distorted signal at the focal plane [11]. Wave-

Optics simulations, however, are time consuming and problem

specific (generalization of results to different problems with

dissimilar initial condition are not easy to apply).
However, using a heuristic approach, approximations and

some results from clear sky turbulence theory it is possible to

have a satisfactory modeling of the problem itself. Considering

a downlink signal that is propagating in turbulent atmosphere,

the figure of merit that better describes the clear air turbu-

lence and its effects on beam propagation is the atmospheric

coherence length, r0, given by

r0 =
(

0.423k2 sec(θ)
∫

C2
n(h)dh

)−3/5

(m)

in which k is the wavenumber, for a slant path θ is the

angle from zenith, while C2
n(h) is strength of the turbulence

defined as the refractive index structure coefficient along the

vertical profile of the atmosphere at altitude h [12] . In first

approximation one can describe r0 as the diameter of a disc

where the phase of a propagating wave at wavelength λ
(with k = 2π/λ) is approximately constant. The atmospheric

coherence length varies during the day (smaller during daytime

larger during nighttime) and it is location dependent (larger in

mountain top, smaller at sea level). For a good location, the

atmospheric coherence length can assume values of tens of

centimeters, while for a bad locations it is just few centimeters.

Effects of the clear air turbulence on the imaging system of

a telescope are basically described by the ratio given by the

telescope diameter D over the atmospheric coherence length

[10]. For D/ro < 3 and for short-exposure, the spot size at

the focal plane is approximately that of the diffraction limited

spread function function. The variation of the angle of arrival

(tilt) due to turbulence, will displace the location of the spot

at focal plane. For short-exposure we define an integration

time (or slot time) is less the atmosphere coherence time τ
approximately given by

τ ≈ r0/V

where V is the wind speed at ground, with τ usually of the

order of milliseconds [13]. For D/ro � 3, and for exposure

time much larger than τ the full width half maximum of the

point spread function at focal plane will angularly given by

the astronomical seeing, defined as

Se = λ/ro

which is many time the diffraction limits of a telescope [12].

Finally, for D/ro � 3 and for integration time less than

τ , the short-exposure point spread function is much larger

than the diffraction limit (but less than that one given by the

astronomical seeing). In this case the point spread function can

be described by the a gaussian like function as approximated

in [14]. For each realization, the centroid of this point spread

function is still displaced over the focal plane by the tilt

angle. The signal envelope at the focal plane will be described

by a collection of speckles with the number of speckles

approximately given by (D/ro)2 , while for each realization

the probability of speckle locations at the focal plane will be

described by the short-exposure point spread function [10].

Of great interest is the case in which at the focal plane

is located a pixellated detector: the overall response of the

system will depend on the number of pixels, pixel pitch, and

number of speckles. If the number of the speckles is very

large in comparison of the number of pixel illuminated, the

overall envelope of the pixel response will be similar of that

one described by the short-exposure point spread function

sampled by detector pixels at the focal plane. If instead, the

number of speckles are much less than the number of pixels

covered by the short-exposure point spread function, than

the overall response envelope will be not continuous, with a

limited number of pixels illuminated by one or more than one

speckle.

VII. CONCLUSIONS

In this paper we have characterized losses on a photon-

counting communications link due to detector blocking. We

illustrated how to approximate the losses when the output is

well characterized as Poisson, as well as numerical methods

to evaluate the losses when it is not. The approximate losses

allow a simple, accurate, approximation of blocking loss for

most cases with a relatively large detector array and sparse

event arrival rates.



APPENDIX

In this section, we provide a method to accurately estimate

count rates at the detector output for the model of blocking

with exponential recovery given by (4). The source is mem-

oryless Bernoulli, producing a pulsed slot, of duration Ts,

with probability 1/M , and a non-pulsed slot with probability

(M−1)/M . Let ns and nb denote the mean un-blocked signal

and noise electrons per slot, respectively.

Divide time into sub-slots of duration δ, where, for nota-

tional convenience, we assume δ divides τ , τb and Ts. The

detector behavior may be accurately modeled with the Markov

chain illustrated in Figure 10. On this graph, each transition

corresponds to a step of duration δ. To simplify notation,

throughout this section in evaluating η(t) we set the last arrival

to be s = 0. We approximate η(t) as constant over each

δ: state i corresponds to a detection efficiency of η(iδ) and

state 1 denotes a detection event (and a reset of the detection

efficiency). To restrict the number of states to be finite, we do

not distinguish differences in the detection efficiency from the

maximum when η0 − η(t) < η0ε, for some 0 < ε < 1. That

is, we put

B =
τ

δ

U = B − τb

δ

ln(ε)�

B represents the blocking duration in sub-slots, and U the

number of sub-slots required to return to the maximum detec-

tion efficiency.

U U − 1 B 1B + 1

Fig. 10. Discrete-Time Markov Model of Detector

Due to the modulation, transition probabilities are con-

stant for blocks of Ts/δ edges. In order to model this, we

define transition matrices Q0, Q1 as follows. Let S(nδ) ∈
{1, 2, . . . , U} denote the state at time t = nδ and X ∈ {0, 1}
the binary input (the slot is pulsed for X = 1 and non-pulsed

for X = 0). Define the matrices Qx, x ∈ {0, 1}, to have

(i, j)-th element

[Qx]i,j = P (S(nδ) = j|S((n − 1)δ) = i,X = x)

=

⎧⎪⎨
⎪⎩

exp(−(xns + nb)η(iδ)δ/Ts) , j = max(U, i + 1)
1 − exp(−(xns + nb)η(iδ)δ/Ts) , j = 1
0 , otherwise

Q1 and Q0 are the sub-slot probability transition matrices for

a pulsed and non-pulsed slot, respectively. The slot probability

transition matrix is given by

[Q]i,j = P (S(nTs = j)|S((n − 1)Ts = i)

=
M − 1

M
[QTs/δ

0 ]i,j +
1
M

[QTs/δ
1 ]i,j

The slot probability matrix is aperiodic and irreducible.

Hence the state probabilities approach the steady state values

P (S(n) = i) = [μ]i given by the (normalized) left eigenvector

of Q.

μQ = μ

A. Detected Count Rates
Let k denote the number of counts in a slot, and ki, i =

1, 2, . . . , Ts/δ, denote the number of counts in sub-slot i (of

duration δ). Assume that δ ≤ τ . Then each sub-slot has at

most one count, and the mean count in noise slot may be

approximated (up to the discrete-time approximation) as

ñb = E[k|x = 0]

=
Ts/δ∑
i=1

E[ki|x = 0]

≈
Ts/δ∑
i=1

P (S(iδ = 1)|x = 0)

=
[
μ(Qo + Q2

0 + . . . + Q
Ts/δ
0 )

]
1

(8)

(note that ñb is the mean count in blocking, whereas nb is the

mean count if there were no blocking)where [v]1 denotes ele-

ment 1 of vector [v] (corresponding here to state 1). Similarly,

the mean counts in a pulsed slot may be approximated as

ñs + ñb = E[k|x = 1]

≈ ˆ(ns + nb) =
[
μ(Q1 + Q2

1 + . . . + Q
Ts/δ
1 )

]
1

(9)

Figures 11 and 12 illustrate the count rates in a noise and

signal slot from a simulation of the continuous-time model

for the parameters corresponding to a single detector in Figure

8: M = 8, Ts = 1 ns, lb = 1.6 × 109 p/s (a rate of 108 per

detector), ld = 103 e/s, η0 = 0.3, τ = 8Ts, δ = Ts/4, ε = 0.1,

and τb = 16Ts. Also illustrated are the estimates (8), (9).
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Fig. 11. Count rates in a noise slot: simulated and estimated
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Fig. 12. Count rates in a signal slot: simulated and estimated
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